2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009


Sherwood, S., et al. including M. D. Zelinka, 2020: A combined assessment of Earth’s climate sensitivity, Rev. Geophys., in press.

Scott, R. C., T. A. Myers, J. R. Norris, M. D. Zelinka, S. A. Klein, M. Sun, and D. R. Doelling, 2020: Observed Sensitivity of Low Cloud Radiative Effects to Meteorological Perturbations over the Global Oceans, J. Climate, in press.

Dong, Y. K. C. Armour, M. D. Zelinka, C. Proistosescu, D. S. Battisti, C. Zhou, and T. Andrews, 2020: Inter-model spread in the pattern effect and its contribution to climate sensitivity in CMIP5 and CMIP6 models, J. Climate, doi:10.1175/JCLI-D-19-1011.1.

Zelinka, M. D., T. A. Myers, D. T. McCoy, S. Po-Chedley, P. M. Caldwell, P. Ceppi, S. A. Klein, and K. E. Taylor, 2020: Causes of higher climate sensitivity in CMIP6 models, Geophys. Res. Lett., 47, doi:10.1029/2019GL085782.
Forcings, feedbacks, and ECS values are available here (regularly updated to include CMIP6 models as they are processed).

Zhou, C., Y. Hu, J. Lu, and M. D. Zelinka, 2020: Responses of the Hadley Circulation to regional sea surface temperature changesJ. Climate, 33, 429-441, doi:10.1175/JCLI-D-19-0315.1.


Po-Chedley, S., M. D. Zelinka, N. Jeevanjee, T. J. Thorsen, and B. D. Santer, 2019: Climatology explains intermodel spread in upper tropospheric cloud and relative humidity response to greenhouse warmingGeophys. Res. Lett., 46, doi:10.1029/2019GL084786.

Santer, B. D., et al. including M. D. Zelinka, 2019: Quantifying stochastic uncertainty in detection time of human-caused climate signalsProc. Natl. Acad. Sci., 116 (40) 19821-19827, doi:10.1073/pnas.1904586116.

Chen, Y.-J., Y.-T. Hwang, M. D. Zelinka, and C. Zhou, 2019: Distinct patterns of cloud changes associated with decadal variability and their contribution to observed cloud cover trends, J. Climate327281-7301, doi:10.1175/JCLI-D-18-0443.1.

Zhang, Y., et al. including M. D. Zelinka, 2019: Evaluation of Clouds in Version 1 of the E3SM Atmosphere Model with Satellite Simulators, J. Adv. Model. Earth Syst., 111253-1268, doi:10.1029/2018MS001562.

Golaz, J.-C., et al. including M. D. Zelinka, 2019: The DOE E3SM coupled model version 1: Overview and evaluation at standard resolutionJ. Adv. Model. Earth Syst., 112089-2129, doi:10.1029/2018MS001603.

Santer, B. D., et al. including M. D. Zelinka, 2019: Celebrating the anniversary of three key events in climate change science, Nature Clim. Change, 9, 180-182, doi:10.1038/s41558-019-0424-x.

Terai, C. R., Y. Zhang, S. A. Klein, M. D. Zelinka, J. C. Chiu, and Q. Min, 2019: Mechanisms behind the extratropical stratiform low‐cloud optical depth response to temperature in ARM site observations, J. Geophys. Res., 124, doi:10.1029/2018JD029359.

McCoy, D. T., et al. including M. D. Zelinka, 2019: Cloud feedbacks in extratropical cyclones: insight from long-term satellite data and high-resolution global simulations, Atmos. Chem. Phys., 19, 1147-1172, doi:10.5194/acp-19-1147-2019.

Colman, R., J. R. Brown, C. Franklin, L. Hanson, H. Ye, and M. D. Zelinka, 2019: Evaluating cloud feedbacks and rapid responses in the ACCESS modelJ. Geophys. Res., 124, doi:10.1029/2018JD029189.


Zelinka, M. D., K. M. Grise, S. A. Klein, C. Zhou, A. M. DeAngelis, and M. W. Christensen, 2018: Drivers of the Low Cloud Response to Poleward Jet Shifts in the North Pacific in Observations and ModelsJ. Climate317925–7947, doi:10.1175/JCLI-D-18-0114.1.

Santer, B. D., et al including M. D. Zelinka, 2018: Human influence on the seasonal cycle of tropospheric temperature, Science, 361, eaas8806, doi:10.1126/science.aas8806.

Caldwell, P. M., M. D. Zelinka, and S. A. Klein, 2018: Evaluating Emergent Constraints on Equilibrium Climate Sensitivity, J. Climate313921-3942, doi:10.1175/JCLI-D-17-0631.1.

Po-Chedley, S., K. C. Armour, C. M. Bitz, M. D. Zelinka, B. D Santer, and Q. Fu, 2018: Sources of intermodel spread in the lapse rate and water vapor feedbacks, J. Climate, 313187–3206, doi:10.1175/JCLI-D-17-0674.1.

Qu, X., A. Hall, A. M. DeAngelis, M. D. Zelinka, S. A. Klein, H. Su, B. Tian, and C. Zhai, 2018: On the emergent constraints of climate sensitivity, J. Climate, 31, 863–875, doi:10.1175/JCLI-D-17-0482.1.


Tsushima, Y., F. Brient, S. A. Klein, D. Konsta, C. Nam, X. Qu, K. D. Williams, S. C. Sherwood, K. Suzuki, and M. D. Zelinka, 2017: The Cloud Feedback Model Intercomparison Project (CFMIP) Diagnostic Codes Catalogue – metrics, diagnostics and methodologies to evaluate, understand and improve the representation of clouds and cloud feedbacks in climate modelsGeosci. Model Dev., 10, 4285-4305, doi:10.5194/gmd-10-4285-2017.

Zelinka M. D., D. A. Randall, M. J. Webb, & S. A. Klein, 2017: Clearing clouds of uncertainty, Nature Clim. Change 7, 674–678 doi:10.1038/nclimate3402.

Zhou, C., M. D. Zelinka, and S. A. Klein, 2017: Analyzing the dependence of global cloud feedback on the spatial pattern of sea surface temperature change with a Green’s Function approach, J. Adv. Model. Earth Syst., 9, 21742189, doi:10.1002/2017MS001096.
Download the Green’s functions from this paper!

Bonfils, C., G. Anderson, B. D. Santer, T. J. Phillips, K. Taylor, M. Cuntz, M. D. Zelinka, K. Marvel, B. I. Cook, I. Cvijanovic, and P. Durack, 2017: Competing influences of anthropogenic warming, ENSO, and plant physiology on future terrestrial aridity, J. Climate, 30, 6883-6904, doi:10.1175/JCLI-D-17-0005.1.

Ceppi, P., F. Brient, M. D. Zelinka, and D. L. Hartmann, 2017: Cloud feedback mechanisms and their representation in global climate models, WIREs Climate Change, e465, doi:10.1002/wcc.465.


Zhou, C., M. D. Zelinka, and S. A. Klein, 2016: Impact of decadal cloud variations on the Earth’s energy budget, Nature Geoscience, 9, 871–874, doi: 10.1038/ngeo2828.
Thorsten Mauritsen’s News and Views on this article: Global warming: Clouds cooled the Earth

Zelinka, M. D., C. Zhou, and S. A. Klein, 2016: Insights from a Refined Decomposition of Cloud Feedbacks, Geophys. Res. Lett., 4392599269, doi:10.1002/2016GL069917.

Terai, C., S. A. Klein, and M. D. Zelinka, 2016: Constraining the low-cloud optical depth feedback at middle and high latitudes using satellite observations, J. Geophys. Res., 121, 96969716, doi:10.1002/2016JD025233.

Norris, J. R., R. J. Allen, A. T. Evan, M. D. Zelinka, C. W. O’Dell, and S. A. Klein, 2016: Evidence for Climate Change in the Satellite Cloud Record, Nature, 536, 72–75, doi:10.1038/nature18273.

McCoy, D. T., I. Tan, D. L. Hartmann, M. D. Zelinka, T. Storelvmo, 2016: On the relationships among cloud cover, mixed-phase partitioning, and planetary albedo in GCMs, J. Adv. Model. Earth Syst., 8, 650–668, doi:10.1002/2015MS000589.

Tan, I., T. Storelvmo, and M. D. Zelinka, 2016: Observational constraints on mixed-phase clouds imply higher climate sensitivity, Science, 352, 6282, 224-227, doi:10.1126/science.aad5300.

Yuan, T., L. Oreopoulos, M. D. Zelinka, H. Yu, J. Norris, M. Chin, S. Platnick, and K. Meyer, 2016: Positive low cloud and dust feedbacks amplify tropical North Atlantic multidecadal oscillationGeophys. Res. Lett., 43, 13491356, doi:10.1002/2016GL067679.

Caldwell, P. M., M. D. Zelinka, K. E. Taylor, and K. Marvel, 2016: Quantifying the Sources of Inter-Model Spread in Equilibrium Climate Sensitivity,  J. Climate, 29, 513–524, doi:10.1175/JCLI-D-15-0352.1.

Santer, B. D., S. Solomon, D. Ridley, J. Fyfe, F. Beltran, C. Bonfils, J. Painter, and M. D. Zelinka, 2016: Volcanic effects on climate, Nature Clim. Change, 6, 3-4, doi:10.1038/nclimate2859.


Zhou, C., M. D. Zelinka, A. E. Dessler, S. A. Klein, 2015: The relationship between inter-annual and long-term cloud feedbacks, Geophys. Res. Lett., 42, 10,46310,469, doi:10.1002/2015GL066698.

DeAngelis, A. M., X. Qu, M. D. Zelinka, and A. Hall, 2015: An observational radiative constraint on hydrologic cycle intensification, Nature, 528, 249-253, doi:10.1038/nature15770.   Corrigendum
Steve Sherwood’s News and Views on this article: The Sun and the rain

McCoy, D. T., D. L. Hartmann, M. D. Zelinka, P. Ceppi and D. P. Grosvenor, 2015: Mixed-phase cloud physics and Southern Ocean cloud feedback in climate models, J. Geophys. Res., 120, 9539-9554, doi: 10.1002/2015JD023603.

Marvel, K., M. D. Zelinka, S. A. Klein, C. Bonfils, P. M. Caldwell, C. Doutriaux, B. D. Santer, and K. E. Taylor, 2015: External influences on modeled and observed cloud trends, J. Climate, 28, 4820-4840, doi:10.1175/JCLI-D-14-00734.1.

Santer, B. D., S. Solomon, C. Bonfils, M. D. Zelinka, J. F. Painter, F. Beltran, J. C. Fyfe, G. Johannesson, C. Mears, D. A. Ridley, J.-P. Vernier, and F. J. Wentz, 2015: Observed multi-variable signals of late 20th and early 21st century volcanic activity, Geophys. Res. Lett., 42, 500509, doi:10.1002/2014GL062366.

Zhou, C., A. E. Dessler, M. D. Zelinka, P. Yang, and T. Wang, 2015: Cirrus feedback on inter-annual climate fluctuations, Geophys. Res. Lett., 41, 91669173, doi:10.1002/2014GL062095.


Johnston, M. S., S. Eliasson, P. Eriksson, R. M. Forbes, A. Gettelman, P. Räisänen, and M. D. Zelinka, 2014: Diagnosing the average spatio-temporal impact of convective systems – Part 2: A model intercomparison using satellite data, Atmos. Chem. Phys., 14, 8701-8721, doi:10.5194/acp-14-8701-2014.

Zelinka, M. D., T. Andrews, P. M. Forster, and K. E. Taylor, 2014: Quantifying Components of Aerosol-Cloud-Radiation Interactions in Climate Models, J. Geophys. Res., 119, 7599-7615, doi:10.1002/2014JD021710.
Code to perform Approximate Partial Radiative Perturbation (APRP) calculations

Ceppi, P., M. D. Zelinka, and D. L. Hartmann, 2014: The Response of the Southern Hemispheric Eddy-Driven Jet to Future Changes in Shortwave Radiation in CMIP5, Geophys. Res. Lett., 41, 3244-3250, doi:10.1002/2014GL060043.

Caldwell, P. M., C. S. Bretherton, M. D. Zelinka, S. A. Klein, B. D. Santer, and B. M. Sanderson, 2014: Statistical Significance of Climate Sensitivity Predictors Obtained by Data Mining, Geophys. Res. Lett., 41, 1803–1808, doi:10.1002/2014GL059205.

Santer, B. D., C. Bonfils, J. F. Painter, M. D. Zelinka, C. Mears, S. Solomon, G. A. Schmidt, J. C. Fyfe, J. N. S. Cole, L. Nazarenko, K. E. Taylor, and F. J. Wentz, 2014: Volcanic Contribution to Decadal Changes in Tropospheric Temperature, Nature Geoscience, 7, 185–189, doi:10.1038/ngeo2098.


Johnston, M. S., S. Eliasson, P. Eriksson, R. M. Forbes, K. Wyser, and M. D. Zelinka, 2013: Diagnosing the average spatio-temporal impact of convective systems – Part 1: A methodology for evaluating climate models, Atmos. Chem. Phys., 13, 12043-12058, doi:10.5194/acp-13-12043-2013.

Grise, K. M., L. M. Polvani, G. Tselioudis, Y. Wu, and M. D. Zelinka, 2013: The ozone hole indirect effect: Cloud-radiative anomalies accompanying the poleward shift of the eddy-driven jet in the Southern HemisphereGeophys. Res. Lett., 40, 1-5, doi:10.1002/grl.50675.

Zelinka, M. D., S. A. Klein, K. E. Taylor, T. Andrews, M. J. Webb, J. M. Gregory, and P. M. Forster, 2013: Contributions of Different Cloud Types to Feedbacks and Rapid Adjustments in CMIP5J. Climate., 26, 5007–5027. doi: 10.1175/JCLI-D-12-00555.1.

Zhou, C., M. D. Zelinka, A. E. Dessler, P. Yang, 2013: An analysis of the short-term cloud feedback using MODIS dataJ. Climate, 26, 4803–4815. doi: 10.1175/JCLI-D-12-00547.1.

Klein, S. A., Y. Zhang, M. D. Zelinka, R. N. Pincus, J.Boyle, and P. J. Gleckler, 2013: Are climate model simulations of clouds improving? An evaluation using the ISCCP simulatorJ. Geophys. Res. 118, 1329-1342. doi: 10.1002/jgrd.50141.
Cloud Error Metrics Code

Forster, P. M., T. Andrews, P. Good, J. Gregory, L. Jackson, and M. D. Zelinka, 2013: Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate modelsJ. Geophys. Res. 118, 1139-1150. doi: 10.1002/jgrd.50174.


Zelinka, M. D., S. A. Klein, and D. L. Hartmann, 2012: Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part I: Cloud Radiative KernelsJ. Climate, 25, 3715–3735. doi:10.1175/JCLI-D-11-00248.1.
Code and Kernels for Computing Cloud Feedbacks

Zelinka, M. D., S. A. Klein, and D. L. Hartmann, 2012: Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part II: Attribution to Changes in Cloud Amount, Altitude, and Optical DepthJ. Climate, 25, 3736–3754. doi:10.1175/JCLI-D-11-00249.1.

Zelinka, M. D. and D. L. Hartmann, 2012: Climate Feedbacks and their Implications for Poleward Energy Flux Changes in a Warming ClimateJ. Climate, 25, 608-624, doi:10.1175/JCLI-D-11-00096.1.


Zelinka, M. D. and D. L. Hartmann, 2011: The Observed Sensitivity of High Clouds to Mean Surface Temperature Anomalies in the TropicsJ. Geophys. Res., 116, D23103, doi:10.1029/2011JD016459.


Zelinka, M. D., 2010: Towards an Improved Understanding of Cloud Feedbacks and Changes in Poleward Energy Transport Associated with Global Warming. Ph.D. Dissertation. University of Washington.

Zelinka, M. D. and D. L. Hartmann, 2010: Why is Longwave Cloud Feedback Positive? J. Geophys. Res., 115, D16117, doi:10.1029/2010JD013817.


Zelinka, M. D. and D. L. Hartmann, 2009: Response of Humidity and Clouds to Tropical Deep ConvectionJ. Climate, 22, 2389-2404, doi:10.1175/2008JCLI2452.1.